Vertebrates

- **Mammals**: monkeys, otter, and other land animals,
- **Birds**: few resident, many migrants and invaders from coastal forests
- **Reptiles**: crocodiles, monitor lizard, snakes
- **Amphibia**: *Rana cancrivora*

Fishes: intertidal (mudskippers, and other gobiid fishes)

- mangrove estuaries, channels and streams

Crustaceans

- **Prawns/shrimps**: in mangrove estuaries, channels and streams

by A. Sasekumar
Invertebrates: macrobenthos

- **Macrofauna**

 - **epifauna** (gastropods & bivalves) - live on lower tree trunks and sediment surface.

 - **infauna** (crabs & sipuncula) - burrowing within sediment, consist of crabs of the families Ocypodidae, Grapsidae & a sipuncula
- Habitat for gastropods and crabs
- Habitat for semi-aquaculture of blood cockle
- Low tide: feeding grounds for waders
- High tide: Feeding grounds for fish and prawns
Fifteen species of mudskippers occur on mangrove shores in Peninsular Malaysia.

Periophthalmodon schlosseri (20cm)
- amphibious & carnivorous fish living in mud burrows.
Boleophthalmus bodaerti (6cm) - herbivore, feeds on benthic diatoms
Encrusting fauna

Low shore, *Sonneratia* forest
Littorina melanostoma (2 cm) L. scabra
Saddle oyster,

Enigmonia aenigmatica

Like other filter feeders such as barnacles, oysters and mytilids, saddle oyster feeds only at high tide.
Uca mani

Deposit feeder - on soft sediment containing diatoms and micro-organisms
Uca dussumieri
Deposit feeder
Crab burrows
Facilitate exchange of water between anoxic substrate and tidal water.
Telescopium mauritsi (8 cm) T. telescopium
Rhizophora forest – High-shore fauna occurs from mid-shore upwards
Uca triangularis (CW 1.5 cm)
High-shore fiddler crab, deposit feeder
Uca rosea (CW 2 cm)
Deposit feeder
Ellobiid gastropods

* Cassidula sp.
* Pythia sp.
Nerita sp. Murex capucinus

Cerithidea cingulata (3 cm)

C. obtusa
Sesarma sp.
Lives in deep burrows on high shore
Sesarma sp. (CW 5 cm) - detritus feeder
Sipuncula, *Phascolosoma arcuatum* (L:10cm)
Mud-lobster mound
Mud-lobster (L: 30 cm)
Thalassina anomala - feeds on sediment
Functional role of macrobenthos

- Ingest **sediment**, burrow and modify it in many physical and chemical ways.
- **Crab burrows** - efficient mechanism for exchange of water between the anoxic substrate & overlying tidal water.
- **Crabs** – major predators, play important role in plant community structure.
- **Grapsid crabs** – consumers of mangrove leaf litter – produce large quantities of faecal material rich in nutrients & energy.
- **Macrobenthos** – animal biomass source of food for vertebrate predators & inshore fish that come in at high tide.
References:

Fish and Prawns

Habitat of many fish and prawn species
Sciaenid, jewfish

Feeds on prawns & other crustaceans
Spotted scat
Feeds on bottom sediment
Snapper, *Lutjanus johnii*
Feeds on prawns
Archer fish, *Toxotes jaculator* feeds on insects from mangrove branches hanging in waterways.
Catfishes - Feeds on benthic invertebrates & fish
Sea perch, *Lates calcarifer*
Mullet, *Liza sp.*

Feeds on sediment with diatoms and micro-organisms
Mud Crab, *Scylla* sp.

4 species of *Scylla* common in Indo-Pacific waters
White prawn, *Penaeus* sp.
RELATIONSHIPS ARE USED TO CONNECT MANGROVE AREA/COVER TO PRAWN CATCH

The relationship between prawn production and mangrove areal extent in three geographical regions: (a) Indonesia (from Martosubroto and Naamin, 1977); (b) Peninsular Malaysia (from Sasekumar and Chong, 1987); and (c) tropical Australia (from Staples et al., 1985).
MAJOR SHRIMPING AREAS MATCH THE DISTRIBUTION OF MANGROVES OF ASEAN
(Chong et al., 1994)

Mangroves 7.45 mil ha

Shrimp: 400,000 tons (50% of world harvest)
X-A - B - C-D → Towards landward margin or decreasing water depth

- Mangrove rehabilitation can bring back the prawns
 - More prawns under mature trees than young trees.
 - More prawns under trees than between trees.
 - More prawns in mangroves away from channel/river bank.

(Affendy & Chong, 2004)
Metapenaeus

Penaeus

Shallow water

FLOOD TIDE

Moves up into the mangrove forest

Shelter among roots

Turbid

A PLACE TO LIVE/ REFUGE HYPOTHESIS

Burrows into the mud

Metapenaeus
Fish community in Matang Mangrove Forest Reserve

138 species were recorded and 105 species were economically important (Chong, 2004)

Common fish families

- Ambassidae
- Ariidae
- Clupeidae
- Engraulidae
- Leiognathidae
- Scathophagidae
- Sciaenidae

(Sasekumar et al, 1994)

Some commercially important migrant fish families

- Carangidae
- Haemulidae
- Lutjanidae
- Polynemidae
- Serranidae

(Chong, 2004)
KLANG MANGROVES: NURSERY-GROUND VALUE FOR FISH AND SHRIMPS

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Fish</th>
<th>Shrimp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channels</td>
<td>12860</td>
<td>1238</td>
</tr>
<tr>
<td>Mudflats</td>
<td>866</td>
<td>239</td>
</tr>
<tr>
<td>Nearshore</td>
<td>642</td>
<td>45</td>
</tr>
<tr>
<td>Farshore</td>
<td>492</td>
<td>328</td>
</tr>
</tbody>
</table>

Chong et al. 1990
Sustainable aquaculture: Floating cages in mangrove estuary
Benefits of conserving mangrove forests in this era of depleting marine resources are:

- Sustain coastal fisheries
- Sustain the biological diversity in the mangrove ecosystem and adjoining shallow waters.

Acknowledgements

Prof. Chong, V.C. kindly provided the slides on mangrove fisheries, and Ms Chew Li Lee assisted in the arrangement of slides for this presentation.